
About Lab 9

In Lab 9 we will play the "Kevin Bacon game". The Internet Movie
Database makes available files with a very large number of lines with
the format

<actor>|<movie>

1. We will start by reading one of these files and forming a graph
showing the connections between actors and movies.

2. We will choose one particular actor (possibly Kevin Bacon, but any
actor or actress would do) to be the "source" node. We will then
run the Shortest Path algorithm to find the shortest path from the
source to every other node in the graph.

3. Given any actor's name, we can then display the path from the
source to that actor.

For example, if A is the source actor and we are seeking a path to actor
D, we might find that A and B were both in movie X, B and C were
both in movie Y, and C and D were both in movie Z. This will print as

A => X => B => Y => C => Z => D

To get started, consider the file "Simple.txt", which contains the
following data:

A|One
A|Two
A|Three
B|Two
C|Three
C|Four
D|Four
D|Five
E|Five
F|Five

Here A,B, C, D, E, and F are all
actors

One, Two, Three, Four, and Five
are all movies

We want to build a graph like this:

A|One
A|Two
A|Three
B|Two
C|Three
C|Four
D|Four
D|Five
E|Five
F|Five

Note that every edge is duplicated so it runs in both directions. We
are essentially making an undirected graph here. It is important that
we are able to go from an actor to her movie OR from the movie to its
actor.

The Single Source ShortestPath algorithm for unweighted graphs adds
the following "predecessor" links. We are using node A as the
"source". The small numbers outside the nodes indicate the node's
distance from the source:

Now, if we want the path from A to
any node, we follow these links back
from that node to the source, pushing
each node onto a stack. When we get
to the source, where there is no
predecessor link, we reverse course
and start popping the stack, adding
the name of each popped node to a
string. The result is the path from the
source to the node.

Note that all actors have even
distances and all movies have odd
distances.

There is starter code for this lab – our usual framework for graphs,
plus an application program. You need to modify the graph
framework to implement a shortest path algorithm.

Here are the four files:

Edge.java This is complete; you shouldn’t need to do anything with it.

public class Edge {
public Vertex destination;

public Edge(Vertex d) {
destination = d;

}

public Vertex destination() {
return destination;

}
}

See: you are already a quarter of the way through the lab.

Vertex.java Your work on this comes in two parts. The first part is really
easy. Our shortest path algorithm needs every vertex to have a value
or distance variable, and also a predecessor on the shortest path back
to the source. You need to add those variables and have them
initialized by the Vertex constructor

public class Vertex {
String name;
List<Edge> adjacentList;
// ADD DISTANCE AND PRED VARIABLES HERE

public Vertex(String name) {
this.name = name;
adjacentList = new LinkedList<Edge>();
// INITIALIZE DISTANCE AND PRED VARIABLES HERE

}

public int distance() {
return -1;
// ACTUALLY RETURN THE DISTANCE VARIABLE

}

Graph.java Now the real work starts. The Graph class has the
vertexMap – a HashMap<String, Vertex>. This much is done. You
need to write loadFile(String filename). This reads a data file and
builds the corresponding graph. Each line of the data file is formatted
as

actor|movie
such as

Bob Geitz|Dumb Or Even Dumber??
First you need to separate out the actor and movie fields. If i is the
index of the ‘|’ character in a line then the actor field is
line.substring(0, i) and the movie field is line.substring(i+1)

You can then call addEdge(actor, movie) to create the edge that
needs to be added to the graph.

Remember that we are adding edges from actors to movies and edges
from movies to actors. Every actor|movie line that you read from the
file should result in two edges being added to the graph.

The next step is findAllPaths(String s). This implements the shortest
path algorithm for unweighted graphs. You will keep a queue of
Vertices. Argument s is the String name of the source node. You can
get the actual source vertex as vertexMap.get(s). The queue starts
with this node. Over and over you remove the head of the queue (call
this h), look at its outgoing edges (h.adjacentList) and if the
destination of any of those edges is a vertex with the default distance
then you assign its predecessor to be h and its distance to be
h.distance+1, and add it to the queue. It sounds complicated but it is
very straightforward and you have tools to give you everything you
need.

You will need a queue of vertices. Java has several classes you can use
for a queue, though none of them are actually called Queue. The
easiest to use is probably LinkedList<Vetex>. This has an offer()
method to enqueue objects and a poll() method to dequeue them.

In the findAllPaths() method, when you assign a distance to a node
you know that the node is reachable from the source. The Graph class
has two lists: one of reachable actors and one of reachable movies. If
the vertex has an even distance it should be an actor so add it to the
actors list; otherwise add it to the movies list. This assumes the
source vertex is an actor; if it is a movie they will be flipped.

There is one final step. In the Vertex class you need to add a method
String getPath(). For any vertex v, v.getPath() should return a string
that says how to go from the source vertex to v, such as

Kevin Bacon (I) => Mystic River => Paul Newman => Cool Hand Luke => Bob

You do this just like you did in the Maze lab (Lab 3): follow the
predecessor links until you get to a node with a null predecessor. This
should be the source node. Push each of those nodes on a stack.
Then repeatedly pop the stack until it is empty, adding what was on
the stack to the string. I’ll leave it to you to work out how to get the
arrows into the string.

MakeGraph.java There is a fourth file in the starter code. This uses
the graph methods you have implemented to play the Kevin Bacon
Game. You should not need to make any changes in it. The program
expects args[0] to be the name of a data file. If you want to change
data files you need to re-run the program.

Here are the command-line options of the program. The commands
are not case-sensitive, but the names of actors are.

Connect: On a separate line the system will prompt you for the
actor to be the Source, and will run the Shortest Path
algorithm with this source.

Path: On a separate line the system will prompt you for the name
of an actor and will print the shortest path from the source
to that actor.

Actors: The system will print the list of actors reachable from the
source

Movies: The system will print the list of reachable movies
Refresh: This erases all of the effects of the shortest path

algorithm so you can re-run Connect with a different source.
Quit: This exits from the system.

Note that you need to know how IMDB refers to various actors. Kevin
Bacon is “Kevin Bacon (I)”. Paul Newman is “Paul Newman (I)”. Daniel
Radcliffe is “Daniel Radcliffe”. Emma Watson is “Emma Watson (II)”.
You can look them up on imdb.com to see what names it uses.

The full IMDB files are very large – millions of lines. I put one of them
on the class website and put code in the starter Graph.loadFile()
method for reading data files from the Net. After you are sure your
code is working try using data file

http://cs.oberlin.edu/~bob/cs151/Labs/Lab9/imdb.no-tv.txt
This has 5 million lines, listing 1.6 million actors and almost half a
million movies.

